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Abstract: A maximum bond order principle is introduced in the LCAO formalism to serve as a generalization of the chemist's 
idea of single and multiple bonds. It is based on a sum of hybrid pair contributions from each atom pair considered. By applica­
tion of the variation principle to these hybrid pairs, the bond order for each pair of atoms appears as a sum of eigenvalues of 
the two-center part of the related density matrix. The definition is general enough to include antibonding effects and is applica­
ble to any size of LCAO basis sets as well as open shell and CI wave functions. The method contains Coulson's Tr-electron bond 
order as a special case, but differs from Mulliken's in various aspects. Several applications with SINDO wave functions to exot­
ic diatomics, hydrogen bonds, bond lengths, and reactions are presented. 

I. Introduction 
The concept of bond order can be found in many elementary 

textbooks. It generally relates to valency multiplicity between 
atoms in molecules. It is helpful to think in terms of single, 
double, and triple bonds in F2, O2, N2, ethane, ethylene, or 
acetylene. Molecular orbital theory allows us to use this out­
growth of chemical intuition in a more systematic way. Text­
books emphasize the following relations between bond orders 
and (a) overlap populations in the bonding region,1 (b) bond 
strengths in terms of energy contribution to the bonding,1'2 (c) 
bond lengths.3,4 A closer look reveals, however, that there are 
only three types of bonds considered: the homonuclear diatomic 
bond, the w bond in conjugated systems, and the pure hybri­
dized a bonds of sp, sp2, or sp3 type. The ir-bond order in con­
jugated systems was introduced by Coulson5 and based on the 
presence of only one AO per atom and the assumption that the 
AOs {A} are orthogonalized: 

p\ = cx(cxy 
Later Chirgwin and Coulson6 modified this concept to include 
nonorthogonal AOs (x! on the atoms: 

Nx = I (pxS + SP*) 

with 

px = cx(cxy 
The diagonal terms of Nx are Mulliken's gross atomic charg­
es.7 Let us assume that the basis sets centered on each atom 
are orthogonal; if they are not they can be Schmidt orthog­
onalized. From all possible orthogonalizations of orbitals on 
different centers the Lowdin orthogonalization8 appears most 
appropriate since it changes the AO's character as little as 
possible. It relates Px and Px in the following way: 

P\ = 51/2/^x51/2 

It follows that 

iVx = px if [Px1 S] - O 

Several years later, Mulliken9 tried to remove the restriction 
of a single AO on each atom. His paper contains several al­
ternatives which are originally discussed only in the case of 
diatomics. His most advanced suggestion is for an orthogon­
alized AO basis and takes the bond order as the sum of all 
two-center elements of the density matrix. This definition does 
not conform with our concept that a single bond has bond order 
one, double bond two, etc. Rather, single bonds can have bond 

* Presented in part at the 12th Symposium fur Theoretische Chemie, Holstein, 
Switzerland, Sept 19-22, 1976. 

orders close to two, double bonds close to three, etc. But the 
serious objection to Mulliken's definition is that it is not in­
variant under coordinate transformation. Thus any application 
of it in polyatomics has to be regarded with much caution. A 
further drawback is the fact that his discovery that 0 bond 
orders might deviate from unity prompted him to rescale them 
to one. In the following section we suggest an approach to 
handle the bond orders in AH and AB fragments in minimal 
basis sets. 

II. The Extremum Principle for Bond Orders Introduced in 
AH and AB Fragments 

In the case of an AH bond with a 1 s AO on atom H and 2s, 
2p AOs on atom A the resulting a bond is given by the contri­
butions of all occupied MOs involving ISH, 2SA, and 2pA or­
bitals, the latter being directed toward the H atom. The LCAO 
bond order can now be defined as a two-center element of the 
density matrix, or charge and bond order matrix called by 
Coulson, involving a hybrid h on A and s' on H. 

PAH
 = Phs' 

The orthonormalized hybrid has the form 

h = asA + V T ^ O 2 P A (2.1) 

so that the bond order appears as 

PAH = <(<UA + VT^f PA)\P0P\S'H) 

= aPss. + V T ^ ? PPs< (2.2) 

where P0p is the density operator. 
It is apparent that the bond order is not only dependent on 

PSS' and Pps' but also on a, i.e., the choice of the hybrid on A. 
Whereas / V and Pps' can be determined by an SCF calcula­
tion, there is no natural choice of h. To think in terms of sp, sp2, 
and sp3 hybrids would be inappropriate in many situations, for 
instance in hydrogen bonds, and quantum chemistry deals with 
continuous mixing of s and p anyway. It seems suggestive to 
consider the bond formation between the atoms as a situation 
where the largest bond orders possible are obtained. We 
therefore determine a with given / V and Ppp> by 

da v ' ' 

Pn,- J-^PPS' = 0 (2.4) 
V l - U 2 
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Finally PAH is evaluated by (2.2) and (2.5) as 

ÂH = V V l + ( ^ ) 

= ± VP^ + P^ (2.6) 

The plus sign refers to Pps> > 0 and the minus sign to Pps' < 0. 
We can actually check whether we have a maximum or mini­
mum by looking at the second derivative 

d2P AH 
da2 ( 1 _ a 2 ) 3 / 2 ' V 

and find (2.5) confirmed: a maximum for Pps' > 0 and a min­
imum for Pps' < 0. We see that it is possible to obtain positive 
and negative orders. So the approach is general enough to in­
clude both bonding and antibonding situations. But the crite­
rion for the plus or minus sign in (2.6) will have to be modified 
in the next section, when we allow for a more general form of 
the hybrids than (2.1) implies. In the case of an AB bond the 
situation is different. Several orthogonal hybrids can be con­
structed on each atom. We suggest that hybrids of the same 
form shall be coupled through the density operator Pop. The 
bond order will take the form 

PAB = <(asA + VT=Va A)\PQP\(bsB' + VT=V- <rB)> 

+ <(- VT=VsA + aaA)\Pop\(- VT=VsB' + baB)) 

+ (""AI^OPITTB) + ( 7TAI Pop I ^ B ) 

= (ab + VT=V VT=V) (P„> + /V) 
+ (bVT=V - aVT=V) (PaS' - Ps,') 

+ P**+ PT? (2.7) 

For a = b = 1, this would be the sum of the diagonal elements 
of the two-center part of the density matrix. With the above 
form we allow for the possibility of SACB bonds in hetero-
molecules. The condition for a maximum of PAB is 

dPAB_dPAB = 

da " db 
(2.8) 

The procedure of solution for a and b is technically rather more 
involved than in the case of PAH. SO we present only the final 
result: 

^AB = ± V(PSS, ± Paa,)2 + (p„, =F psff,)2 
+ P,,'+ P^ (2.9) 

Before we proceed to the general method, we want to prove that 
the sum over all two-center density matrix elements is not 
invariant under transformation of the coordinate axes, hence 
unsuitable as a bond order concept. Let 

P A H = <^|POP |JH> + U | P 0 p M 

+ ^ |PopkH> + (z|P0p|5H> 

= PsH + PxH + PyH + PZH 

If a new coordinate system is generated through rotation of x 
and y axes about the z axis by an angle tp, PAH would be de­
pendent on the angle of rotation: 

PAH = PsH + (cos <p + sin <p)Px'H 

+ (' ;cos <fi - sin <p)Py'H + Pz'H 

This fact disqualifies Mulliken's definition as a suitable al­
ternative in molecules with less symmetry than linear molecules 
have. Only in the latter case we find PX'H = P / H = 0 when the 
z axis is taken as the symmetry axis. 

There are few further simple examples in which an analyt­
ical form for the bond order can be developed. The next section 

will attack the problem more generally in matrix form and by 
means of eigenvalue equations. 

III. The General Method 
Let A = (au .. •, am) and B = (bu... ,b„) be AO basis sets 

on atoms A and B. The basis sets are supposed to be Schmidt 
orthonormalized on each atom and subsequently Lowdin or-
thonormalized with respect to the whole set. The size of the two 
sets on A and B can be different. We construct now orthogonal 
hybrids G on A and H on B: 

with 

G = AT 

H=BU 

GG = TAAT=I 

HH = UBBU = T 

(3.1) 

For orthogonal basis sets 

TT= I 

(JU=T (3.2) 

It seems suggestive to define a bond order PAB between atoms 
A and B by an extremum principle. The bonds between two 
atoms are supposed to be formed by maximum positive bond 
orders for a bonding situation and maximum negative bond 
orders for antibonding situations. This can be accomplished 
by selecting pairs \gj, h,] of hybrids on A and B and maximizing 
the sum of pairs Pglh,- The number of pairs to be formed is 
min(w, n). The bond order is now defined as the maximum of 
the trace of elements of G and H coupled through the density 
operator Pop: 

PAB = Tr (GP0VH) 

= Tr (f^P0p BU) 

with 

= Tr (TPU) 

minim, n) 

Tr= Z 

(3.3) 

P is the two-center part of the density matrix of A and B over 
the basis OAOs. We determine the maximum of PAB subject 
to the orthogonality conditions (3.2). For this purpose we de­
fine a functional 

PAB' = PAB + Tr [(/ - TT)A] + Tr [A'(P - UU)] (3.4) 

where A and A' are Lagrange multipliers. The extremum 
conditions are 

WAB' _ dPAB ' = 0 (3.5) 
dT dU 

This abbreviated form means that the derivatives have to be 
taken with respect to all elements of f and U. We obtain the 
following set of equations: 

PU - T(A + A) = 0 

TP - (A'+ A')U = 0 (3.6) 

Since the trace runs only to min(m, «), we can ignore those 
parts of the matrices exceeding this size or fill in zeros to make 
them compatible. If the first equation is multiplied by f from 
the left and the second equation multiplied by U from the right, 
it immediately follows that 

PAB = Tr(A + A) = Tr(A' + A') (3.7) 
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We now diagonalize A + A by an orthogonal transforma­
tion 

T= CX 

U= CY 

with 

*(A + A ) y = A D (3.8) 

AD is a diagonal matrix. It follows that (3.6) will be cast by 
(3.8) in the form 

PC - CAD = 0 

CP - A'DC" = 0 (3.9) 

which can be written as 

PC1' - Xid = 0 

PQ-X1-CZ = O (3.10) 

An alternative presentation of these equations is the following 

matrix form: 

(C0, C0') are occupied, (Cu, C11') unoccupied hybrid pairs. It has 
the advantage to be generally valid for rectangular P matrices, 
since the total coefficient matrix always has the square form. 
Its solutions are given by the usual condition that the coeffi­
cient determinant of (3.11) vanishes: 

| / W 1 - « A B ) - M y I = O (3.12) 

Here P1-^8 means the totality of density matrix elements re­
ferring to atoms A and B. The single-center elements are 
eliminated by the factor (1 — <5AB)- The two-center elements 
reduce to P and P, respectively. Since (3.7) will be converted 
by (3.8) into its final form 

PA B = TrAD (3.13) 

this means that the bond order appears as the sum of eigen­
values of the two-center part of the density matrix of the two 
atoms A and B. 

If we cast (3.10) in operator form, we obtain 

Po p / / = CAD 
or 

Pophi=\igi (3.14) 

There are apparent similarities of this equation with the ei­
genvalue equations of the energy, in particular with the deri­
vation of the SCF equation. 

From (3.12) we will prove now two important properties of 
the eigenvalues. Considering that AD is diagonal (3.12) can 
be evaluated in the form when we assume m > n: 

\m+n+ ai\m+n-2 + . . . a„\m-" = 0 (3.15) 

It follows that 

\m-n (X2n + a , \ 2 (« - l ) + . . . a„) = Q 

It is apparent that (a) there are | m — n | eigenvalues X = O, (b) 
the rest of the eigenvalues, namely 2 min(w, n), appear in pairs 
±X. The positive eigenvalues may represent bonding, the zero 
eigenvalues nonbonding, and the negative eigenvalues anti-
bonding. We order the X1- in a sequence of decreasing eigen­
values. When we now remember that the number of indepen­
dent pairs is min(w, «), then the maximum bond order would 
be naturally the sum of all positive eigenvalues X,-: 

minim, n) 
P A B = E X,- (3.16) 

This procedure would not allow for antibonding. It would also 
not be invariant under coordinate transformation. For instance, 
if in a local coordinate system on atom A the direction of the 
axis along the internuclear axis is inverted, the density matrix 
elements involving p<7A orbitals change sign and corre­
spondingly some eigenvalues switch from ±X to =FX. SO a closer 
look at the eigenvectors, i.e., the hybrid pairs, is necessary. It 
seems appropriate to distinguish the hybrid pairs in three 
groups: (a) bonding if the overlap is larger than zero, (b) 
nonbonding if the overlap is zero, (c) antibonding if the overlap 
is less than zero. This is analogous to Mulliken's distinction of 
MOs in bonding, nonbonding, and antibonding.10 It should be 
pointed out that the overlap has to be calculated after deor-
thogonalization of an OAO basis set. We now modify the 
definition of bond order by taking 

min(m, n) 
P A B = E X, sign (SJ1)F,) (3.17) 

i = i 

where f,- and hi are the deorthogonalized hybrid forms of g,-
and hi. This definition of PAB is invariant under coordinate 
transformations, since the eigenvalues and eigenvectors of the 
density matrix are invariant under general rotations and 
translations of the coordinate system. So the total bond order 
is no longer necessarily a maximum (positive terms only) or 
a minimum (negative terms only), but may consist of both 
positive and negative terms. We call the situation of two atoms 
bonding if PAB > 0, nonbonding for PAB = 0, and antibonding 
for PAB <0. 

Several remarks seem to be in order. It is not the aim of this 
method to attach a special meaning to each MO. In particular, 
the eigenvectors of the submatrices of the density matrix do 
not represent the MOs. So the purpose of this work is totally 
different from the maximum overlap concept11-12 where the 
eigenvectors of the overlap matrix can represent under certain 
restrictive conditions, for instance, Hiickel MOs. For practical 
purposes, it seems useful to transform the two-center density 
matrix of two atoms to a local coordinate system with axes 
along and perpendicular to the internuclear axis. This allows 
an analysis in a and T contributions to the bond order and 
would seem to be more appealing to the experimental chemist. 
Here is also a chance to use a physical picture of the bond. If 
we deorthogonalize the hybrids, hybrid pairs can be plotted. 
They replace the classical a- and 7r-bond pairs. In addition to 
those dominating ones, there appear corrections which had 
been previously ignored: those between nonadjacent bonds, 
lone pairs, etc. 

IV. Applications 
We have applied this concept of bond order to a large 

number of molecules using SINDO wave functions13 which 
have proven their usefulness in several chemical reactions.14-16 

These wave functions suffice to demonstrate the qualitative 
aspects of our concept. Since comparisons had to be made on 
a consistent basis including full geometry optimizations, lack 
of available comparable ab initio data prevented an extensive 
ab initio analysis at this time. 

In this section we present results of (a) bond orders for di-
atomics, (b) a bond order-bond length relation for CC, CO, 
and CH bonds, (c) a case of hydrogen bonding, (d) a case of 
bond breaking and bond forming during a chemical reac­
tion. 

In Table I bond orders of diatomics are collected in their 
ground state equilibrium with SINDO wave functions. Several 
facts are remarkable: (1) <r bond orders are not unity, but can 
deviate appreciably from one. (2) Hydride bonds are close to 
one in the range of 0.86-1.00. (3) Homonuclear diatomics have 
single bonds in H2, Li2, and F2, a double bond in O2, and a 
triple bond in N2; CO is close to a triple bond. (4) B2 appears 
as a double bond and C2 as a triple bond. This latter result 
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Table I. Total Bond Orders of Diatomic Molecules in Their 
Equilibrium with a Bond Orders in Parentheses 

H 

Li 

Be 

B 

C 

N 

O 

F 

a 

H Li 

1.0 
(1.0) 
0.93 1.0 

(0.93) (1.0) 
0.86 1.33 

(0.86) (0.86) 
0.990 1.66 

(0.990) (0.82) 
0.998 1.91 

(0.998) (0.78) 
0.987 1.85 

(0.987) (0.85) 
0.97 1.96 

(0.97) (0.78) 
0.95 1.79 

(0.95) (0.79) 

Not bound. 

Be 

0.0" 
(0.0) 
2.41 

(0.93) 
2.77 

(0.86) 
2.97 

(1,22) 
3,08 

(1.37) 
1.70 

(0.68) 

B 

2.38 
(1.38) 
2,43 

(0.46) 
2,23 

(1.02) 
1.84 

(0.37) 
1,80 

(0.77) 

C 

3.45 
(1.45) 
3.09 

(1.13) 
2.76 

(0.91) 
1.66 

(0.85) 

N 

3.0 
(1.0) 
2.41 

(0.98) 
1.48 

(0,94) 

O F 

2.0 
(1.0) 
1.13 1.0 

(0.90) (1.0) 

homonuclear diatomics with one occupied bonding MO the 
bond order stays one regardless of the basis set. 

In Table III we list a few CC and CH bond orders in our and 
Mulliken's definition. It is clear from this table that Mulliken's 
definition is not compatible with the chemist's idea of single 
and multiple bonds. A particular problem arises in the case of 
cyclopropane, where even a localization procedure cannot 
determine the bond order uniquely (1.57 vs. 2.43). The reason 
is that the choice of the direction of the axes perpendicular to 
the internuclear axis is not unique and Mulliken's definition 
depends on this choice in cyclopropane. On first glance our 
definition is in agreement with popular notions of these bonds. 
For instance, the value of 1.32 in cyclopropane is explained by 
0.88 + 0.32 bent bond character plus 0.12 r bond character. 
In the sequence acetylene, ethylene, ethane, the ordering of 
bond orders might seem surprising at first. The bond energy 
of the CH bond decreases in the sequence just mentioned. But 
our definition is not based on a comparison of bond energies; 
rather it serves to characterize the valence multiplicity. A single 
bond in H2 or Li2 has the same bond order. If one wishes to 
reproduce bond energies, an empirical scheme such as the one 

Table II. A 

OAO 

•Sa 

Ca 

Sb 

Cb 

g\ + hi 
gl + hi 
gi + h3 

gi, + hi, 

Comparison of a 

Si 

0 
0 
0.217 
0.694 

gi + hi 

0.727 

Bonding in C2 

^a 

0 
0 
0.694 

-0.217 

gi + h2 

0.727 

and N 

C2 

2 

Sb 

0.217 
0.694 
0 
0 

gi + hi 

-0.727 

Two center parts of density matrix 
Cb -Sa 

0.694 
-0.217 

0 
0 

Diagonalized density 
gi + hi, 

-0.727 

0 
0 
0.254 
0.435 

matrix 
gi +hi 

1.0 

N2 

Ca 

0 
0 
0.435 
0.746 

gi + hi 

0.0 

•Sb 

0,254 
0,435 
0 
0 

gi + h3 

0.0 

Cb 

0,435 
0.746 
0 
0 

gi + hA 

-1 .0 

comes as most unexpected on the basis of the Aufbau principle 
according to which B2 should be a single and C2 a double bond. 
These bonds appear as pure T bonds with no a bond present. 
It is apparent from the table that our result is based on a a bond 
for both molecules. To understand this result better, we will 
compare the main features of C2 and N2 in terms of the density 
matrix in Table II. It appears that in the case of C2 that PHSb 
+ P^b = 0 whereas it is 1 for N2. Referring to (2.9) we see 
that the a bonding in C2 comes from the cross terms PSgab and 
P(Xa-Sb whereas it comes from PSaSb and /La<rb in N2. In the case 
of C 2 the SINDO MOs 2<rg and 2<ru have both a positive 
overlap charge, hence they are both bonding. In N2 2ag and 
3(Tg have a positive overlap charge whereas 2<ru has a negative 
overlap charge. When we know that ab initio results on N2 by 
Scherr17 get a negative overlap for 3<rg, we cannot attach too 
much significance to each single MO. We expect, however, that 
the sum of bond order contributions from all occupied MOs 
will not depend so strongly on the choice basis sets as net 
charges. It can be crucial only in Be2, B2, and C2, when the 
overlap of the second a MO changes sign. We shall investigate 
the basis set dependence in a subsequent paper. It frequently 
happens that the change of basis in terms of orbital exponents 
causes the increase of a coefficient on an atom in a normalized 
orbital and a decrease of another coefficient on another atom. 
In the case of net charges where c,-2 is a determining contri­
bution to the charge, there is no counterbalancing effect. But 
the bond order consisting of terms C,AO'B

 c a n m principle 
counterbalance the increase of one factor by the decrease of 
the other; hence it is more stable under basis set changes. With 
respect to the integer bond orders, it is analytically not gen­
erally clear whether basis extensions affect these values. For 

pursued extensively by Politzer18 might be helpful. However, 
the name "bond order" seems confusing in this context when 
values of 1.55 for H2or 0.172 for Li2 are obtained. Politzer's 
"bond orders" are really labels for bond strengths. For di­
atomics, Parr and collaborators19 worked out an empirical 
bond charge concept. A comparison was made with simple 
bond orders and overlap populations in homonuclear diatomics. 
The model seems to work well except for bonds involving 
halogen atoms where the values are significantly larger than 
one. Later Simons and Parr20 managed to show that in a 

Table III. Various Bond Orders by This Method with Mulliken 
Numbers in Parentheses 

Molecule 

H2 

Li2 

B2 

C2 

N 2 

NO 
O2 

C2H2 

C2H4 
C2H6 

CH 4 

N H 3 

H2O 
HF 
Cyclopropane 

Type 
XX' 

1.0 (1.22) 
2.38 (2.33) 
3.45 (3.39) 
3.0 (3.87) 
2.40(3.10) 
2.0 (2.65) 
3.07 (3.90) 
2.11 (3.10) 
1.20(2.00) 

1.32(1.57) 
(2.43) 

of bond 
XH 

1.0 (1.0) 

0.966(1.362) 
0.976(1.356) 
0.988(1.355) 
0,995(1.357) 
0.990(1.337) 
0.985(1.299) 
0.954(1.269) 
0.977(1.364) 

(1.368) 
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CC Bond LengthlA) 

Figure 1. CC bond order in dependence of bond length: 1, C2; 2, acetylene; 
3, ethylene; 4, ethane; 5, cyclopropane; 6, propene; 7, allene; 8, cyclopen-
tadiene; 9, ketene; 10, diketene; 11, 2,4-dimethylene-l,3-dioxetane; 12, 
cyclobutane-l,3-dione; 13, benzene. 

multipole expansion their empirical model would yield bond 
charges that are maxima at equilibrium. After completion of 
this work, we became aware of a maximum overlap population 
postulate by Kaufman.21 This attempt has met with different 
success.22 It shares the difficulties and restrictions of the 
maximum overlap principle.11 Coming back to the relative 
magnitudes of bond orders more generally in polyatomic 
molecules, we have compared bond orders and bond lengths 
for CC, CO, and CH. The results are presented in Figures 1-3. 
We find that we can correlate these two quantities linearly. For 
CC and CO bonds the bond orders decrease with increasing 
bond lengths. However, since the SINDO bond lengths appear 
too long by about 9%, a result to be expected from previous test 
calculations,13 no quantitative recipe can be derived here. But 
we have tested the bond order-bond length relation also at the 
experimental geometries of the molecules considered and find 
a parallel shift toward smaller bond lengths with almost no 
change in slope of the correlation axis. Here we find also some 
support for the result of a triple bond in C2. A triple bond fits 
in nicely with the fact that the bond length of C2 is quite close 
to the CC bond in acetylene, which is undoubtedly a triple 
bond. 

For CH bonds we obtain the result that the bond order in­
creases with increasing bond length. This somewhat unex­
pected result can be explained on the basis of the covalent 
character of the MO LCAO bond order. Methane has more 
covalent bonding than acetylene. In this case the increasing 
bond order and also bond length corresponds to an increasing 
p character in the hybrid on C. Other investigators23 have 
previously emphasized the decreasing s character with in­
creasing bond length. From Figure 3 we see that the CH rad­
ical has the optimal covalent bond order. For larger distances 
as occur in hydrogen bonds we expect the bond order to de­
crease. Considering that a purely ionic bond would have bond 

3.0 

2.5 

I 
S 2.0 

1.5 

1.0 
1.2 U 1.6 1.8 

CO Bond Length (A) 

Figure 2. CO bond orders in dependence of bond length: 1, CO; 2, ketene; 
3, diketene; 4, CO ;̂ 5, formaldehyde; 6, 2,4-dimethylene-l,3-dioxetane; 
7, cyclobutane-l,3-dione; 8, cyclobutane-l,2-dione. 

1.00 

2 0 0.99 
13 

X 
O 

0.98 

0.97 

0.96-

•10 
15. / « »10 

O.95L 
1.16 1.17 1.18 1.19 

CH Bond Length (A) 

Figure 3. CH bond orders in dependence of bond length: 1, CH; 2, meth­
ylene singlet; 3, methylene triplet; 4, methyl; 5, methane; 6, acetylene; 7, 
ethylene; 8, ethane; 9, cyclopropane; 10, propene; 11, allene; 12, formal­
dehyde; 13, ketene; 14, diketene; 15, 2,4-dimethylene-l,3-dioxetane; 16, 
cyclobutane-l,3-dione; 17, HCN; 18, benzene. 

order zero, we must introduce an additional ionic term to the 
total bond order. 

••total — "< covalent + Pu 

We will not discuss this problem here, since such a term should 
depend on the atomic charges. Those are more crucially de­
pendent on the choice of basis set and the charge definition. 
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In these figures there is no account of dominating antibonding 
effects as they might occur in non-nearest-neighbor bonds. In 
fact, the straight lines obtained if extended to larger distances 
do not describe bond orders for second or third neighbors. 
Antibonding occurs with second carbon-carbon neighbors in 
propene (P = -0.14) and allene (P = -0.24). For diketene 
small positive and negative bond orders occur for farther 
neighbors similar to results of Hiickel calculations, e.g., in 
benzene. Such effects are introduced arbitrarily by a long-
range factor by Cohen,24 who uses the overlap population as 
a bond order concept. Cohen's work has the merit of empha­
sizing the necessity of rotational invariance. He uses a pro­
jection technique to achieve this. He gives also an appreciation 
of the literature. In contrast to Politzer18 and Parr,19 his 
halogen bond orders are rather small. His hydrocarbon bond 
orders are close to ours. We plan a detailed comparison in a 
subsequent paper. 

We finally come to most interesting, but least explored fields 
where bond orders can be useful. First, we have tried to cal­
culate bond orders for hydrogen-bonded system B2H6, with 
the following result: PBB = 0.988, P3H = 0.974, PBH> = 0.695. 
BH is the normal, BH' the hydrogen bond. The geometry is 
basically correct (RBB = 1.95 A, RBH = 1.296 A, RBH> = 1.44 
A, 0BBH' = 47.4) with the bond lengths too long by 10%. From 
here we expect that bond orders of hydrogen bonds are sig­
nificantly reduced, their magnitude being about 0.7. Studies 
on other hydrogen-bonded systems will be undertaken. The BB 
bond order is less than that of a single bond (~1.20), but it is 
probably too large. We assess this as a shortcoming of the 
SINDO wave function. Indicative of this might be that the 
dissociation energy of B2H6 in two BH3 is much too large in 
the SINDO method. We have also studied N2O4 with the re­
sult that FNO = 1 -997, practically the same as the bond order 
2.002 in NO2 and PNN = 0.23. The latter bond order is the 
smallest we have found so far in any molecule in its equilibri­
um. 

In nonequilibrium situations as they arise in chemical re­
actions the bond order can be a measure of whether a bond is 
broken or loosened. In a previous paper on the cyclopropane-
propene isomerization16 we have shown on the basis of bond 
order considerations that the reaction is concerted. Also the 
sequence of bond breaking and forming could be established. 
The consequence of these calculations can be experimentally 
tested inasmuch as they predict a hindered rotation of the 
methylene group during the CC bond opening. During the 
reaction, various bond orders change from bonding to anti-
bonding and vice versa. 

V. Conclusion 

In this paper we presented the concept of a bond order to 

describe the valency multiplicity of bonds in molecules in their 
equilibrium and nonequilibrium situations. The method is 
applicable to all cases where a LCAO density matrix can be 
defined. In principle it can be used not only in closed-shell SCF 
but also in open-shell cases or with CI wave functions. The 
diagonalization of the two-center density matrix of a pair of 
atoms yields eigenvalues whose sum can be used to define a 
bond order. It is practical, but not necessary, to transform all 
the orbitals to a local coordinate system in which <r and TT 
contributions to the bond order can be distinguished. After 
deorthogonalization the hybrid pairs can replace in a physical 
picture the classical a and IT bonds. Semiempirical calculations 
were performed to have a consistent basis for a variety of cases. 
They show qualitatively the general trend. The bond orders are 
basis set dependent, but less so than charges since changes in 
coefficients can often be counterbalanced. We are in the pro­
cess of testing the results by ab initio calculations on a selected 
number of accessible systems. 
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